1. <tr id="11yz1"></tr>
      2. <output id="11yz1"><nobr id="11yz1"></nobr></output>

        1. SI9130 [VISHAY]

          Pin-Programmable Dual Controller?Portable PCs; 引腳可編程雙路控制器,便攜式電腦
          SI9130
          型號: SI9130
          廠家: VISHAY    VISHAY
          描述:

          Pin-Programmable Dual Controller?Portable PCs
          引腳可編程雙路控制器,便攜式電腦

          電腦 控制器 便攜式 PC
          文件: 總13頁 (文件大?。?39K)
          中文:  中文翻譯
          下載:  下載PDF數據表文檔文件
          Si9130  
          Vishay Siliconix  
          Pin-Programmable Dual Controller—Portable PCs  
          FEATURES  
          D Fixed 5-V and Programmable 3.3-V, 3.45 V, or 3.6 V Step-Down  
          Converters  
          D Less than 500-mA Quiescent Current per Converter  
          D 25-mA Shutdown Current  
          D 5.5-V to 30-V Operating Range  
          DESCRIPTION  
          The Si9130 Pin-programmable Dual Controller for Portable  
          PCs is a pin-programmable version of the Si786 dual-output  
          power supply controller for notebook computers. The Buck  
          controllers provide 5 V and a pin-programmable output delivering  
          3.3 V, 3.45 V, or 3.6 V.  
          A complete power conversion and management system can  
          be implemented with the Si9130 Pin-programmable Dual  
          Controller for Portable PCs, an inexpensive linear regulator,  
          the Si9140 SMP Controller for High Performance Processor  
          Power Supplies, five Si4410 n-channel TrenchFETr Power  
          MOSFETs, one Si4435 p-channel TrenchFET Power  
          MOSFET, and two Si9712 PC Card (PCMCIA) Interface  
          Switches.  
          The circuit is a system level integration of two step-down  
          controllers and micropower 5-V and 3.3-V linear regulators.  
          The controllers perform high efficiency conversion of the  
          battery pack energy (typically 12 V) or the output of an ac to dc  
          wall converter (typically 18-V to 24-V dc) to 5-V and 3.3-V  
          system supply voltages. The micropower linear regulator can  
          be used to keep power management and back-up circuitry  
          alive during the shutdown of the step-down converters.  
          The Si9130 is available in both standard and lead (Pb)-free  
          28-pin SSOP packages and specified to operate over the  
          commercial (0_C to 70_C) and extended commercial (?10_C  
          to 90_C) temperature ranges. See Ordering Information for  
          corresponding part numbers.  
          FUNCTIONAL BLOCK DIAGRAM  
          5.5 V to 30 V  
          3.3 V  
          mP  
          Power  
          Memory  
          Section  
          Si9130  
          5 V  
          SHUTDOWN  
          Peripherals  
          5-V ON/OFF  
          3.3-V ON/OFF  
          SYNC  
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          1
          Si9130  
          Vishay Siliconix  
          ABSOLUTE MAXIMUM RATINGS  
          V+ to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V t0 36 V  
          REF, V Short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Momentary  
          L
          REF Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
          PGND to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "2 V  
          V
          L
          Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
          V
          L
          to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 7 V  
          Continuous Power Dissipation (T = 70_C)a  
          BST , BST to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 36 V  
          A
          3
          5
          b
          28-Pin SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 mW  
          LX to BST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -7 V to 0.3 V  
          3
          3
          Operating Temperature Range:  
          LX to BST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -7 V to 0.3 V  
          5
          5
          Si9130CG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 70_C  
          Inputs/Outputs to GND  
          (3.45ADJ, 3.6ADJ, SHDN, ON , REF, SS , CS . FB , SYNC, CS , FB , SS ,  
          Si9130LG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ?10_ to 90_C .  
          5
          5
          5
          5
          3
          3
          3
          Lead Temperature (soldering, 10 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . 300_C  
          ON ) -0.3 V, (V + 0.3 V)  
          3)  
          L
          DL , DL to PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V, (V + 0.3 V)  
          3
          5
          L
          Notes  
          DH to LX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V (BST + 0.3 )  
          3
          3
          3
          a. Device mounted with all leads soldered or welded to PC board.  
          DH to LX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V (BST + 0.3 )  
          b. Derate 9.52 mW/_C above 70_C.  
          5
          5
          5
          Exposure to Absolute Maximum rating conditions for extended periods may affect device reliability. Stresses beyond those listed under “Absolute Maximum Ratings” may cause  
          permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the  
          operational sections of the specifications is not implied.  
          SPECIFICATIONS  
          LIMITS  
          Specific Test Conditions  
          V+ = 15 V, I = I  
          = 0 mA, SHDN = ON = ON = 5 V  
          VL  
          REF  
          3
          5
          A
          B
          A
          PARAMETER  
          MIN  
          TYP  
          MAX  
          UNIT  
          Other Digital Input Levels 0 V or 5 V, T = T  
          to T  
          A
          MIN  
          MAX  
          3.3-V and 5-V Step-Down Controllers  
          Input Supply Range  
          5.5  
          30  
          0 mV < (CS -FB ) < 70 mV, 6 V < V + < 30 V  
          5
          5
          FB Output Voltage  
          4.80  
          3.17  
          3.32  
          5.08  
          3.35  
          3.50  
          5.20  
          3.46  
          3.60  
          5
          (includes load and line regulation)  
          3.6ADJ = 3.45ADJ = OPEN  
          0 mV < (CS -FB ) <  
          3
          3
          V
          70 mV  
          3.6ADJ = OPEN  
          3.45ADJ = GND  
          FB Output Voltage  
          3
          6 V < V + < 30 V  
          (includes load and  
          line regulation)  
          3.6ADJ = GND  
          3.46  
          3.65  
          3.75  
          3.45ADJ = OPEN  
          Load Regulation  
          Line Regulation  
          Either Controller (CS_ to FB_ = 0 to 70 mV)  
          Either Controller (V+ = 6 V to 30 V)  
          2.5  
          0.03  
          100  
          4.0  
          %
          %/V  
          mV  
          mA  
          Current-Limit Voltage  
          CS -FB or CS -FB  
          5
          80  
          2.5  
          2
          120  
          6.5  
          3
          3
          5
          SS /SS Source Current  
          3
          5
          SS /SS Fault Sink Current  
          mA  
          3
          5
          Internal Regulator and Reference  
          ON = ON = 0 V, 5.5 V < V+ < 30 V  
          5
          3
          V
          V
          Output Voltage  
          4.5  
          5.5  
          L
          L
          0 mA < I < 25 mA  
          L
          Fault Lockout Voltage  
          Falling Edge, Hysteresis = 1%  
          3.6  
          4.2  
          4.2  
          4.7  
          3.36  
          3.2  
          75  
          V
          V /FB Switchover Voltage  
          L
          Rising Edge of FB , Hysteresis = 1%  
          5
          5
          c
          REF Output Voltage  
          No External Load  
          3.24  
          2.4  
          REF Fault Lockout Voltage  
          REF Load Regulation  
          Falling Edge  
          d
          0 mA < I < 5 mA  
          30  
          mV  
          L
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          2
           
          Si9130  
          Vishay Siliconix  
          SPECIFICATIONS  
          LIMITS  
          TYP  
          Specific Test Conditions  
          V+ = 15 V, I = I  
          = 0 mA, SHDN = ON = ON = 5 V  
          VL  
          REF  
          3
          5
          to T  
          A
          B
          A
          PARAMETER  
          MIN  
          MAX  
          UNIT  
          Other Digital Input Levels 0 V or 5 V, T = T  
          A
          MIN  
          MAX  
          Internal Regulator and Reference (Cont’d)  
          V+ Shutdown Current  
          V+ Standby Current  
          SHDN = ON = ON = 0 V, V+ = 30 V  
          25  
          70  
          40  
          3
          5
          mA  
          ON = ON = 0 V, V+ = 30 V  
          110  
          3
          5
          Quiescent Power Consumption  
          (both PWM controllers on)  
          FB = CS = 5.25 V  
          5 5  
          5.5  
          30  
          8.6  
          60  
          mW  
          FB = CS = 3.5 V  
          3
          3
          V+ Off Current  
          FB = CS = 5.25 V, V Switched Over to FB  
          mA  
          5
          5
          L
          5
          Oscillator and Inputs/Outputs  
          SYNC = 3.3 V  
          270  
          170  
          200  
          200  
          300  
          200  
          330  
          230  
          Oscillator Frequency  
          kHz  
          ns  
          SYNC = 0 V, 5 V  
          SYNC High Pulse Width  
          SYNC Low Pulse Width  
          SYNC Rise/Fall Time  
          Oscillator SYNC Range  
          Not Tested  
          200  
          350  
          240  
          89  
          kHz  
          %
          SYNC = 3.3 V  
          92  
          95  
          Maximum Duty Cycle  
          Input Low Voltage  
          SYNC = 0 V, 5 V  
          92  
          SHDN, ON , ON SYNC  
          0.8  
          3
          5
          SHDN, ON , ON  
          3
          2.4  
          V
          5
          Input High Voltage  
          Input Current  
          SYNC  
          V
          L
          - 0.5 V  
          SHDN, ON , ON  
          V = 0 V, 5 V  
          IN  
          "1  
          mA  
          3
          5
          DL /DL Sink/Source Current  
          V = 2 V  
          OUT  
          1
          1
          3
          5
          A
          DH /DH Sink/Source Current  
          BST - LX = BST - LX = 4.5 V, V = 2 V  
          OUT  
          3
          5
          3
          3
          5
          5
          DL /DL On-Resistance  
          High or Low  
          High or Low  
          7
          7
          3
          5
          W
          DH /DH On-Resistance  
          3
          5
          BST - LX = BST - LX = 4.5 V  
          3
          3
          5
          5
          Notes  
          a. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.  
          b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
          c. The main switching outputs track the reference voltage. Loading the reference reduces the main outputs slightly according to the closed-loop gain (AV ) and  
          CL  
          the reference voltage load-regulation error. AV for the 3.3-V supply is unity gain. AV for the 5-V supply is 1.54.  
          CL  
          CL  
          d. Since the reference uses V as its supply, its V+ line regulation error is insignificant.  
          L
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          3
           
          Si9130  
          Vishay Siliconix  
          TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)  
          Efficiency vs. 5-V Output Current, 200 kHz  
          Efficiency vs. 5-V Output Current, 300 kHz  
          100  
          90  
          80  
          70  
          60  
          50  
          100  
          90  
          80  
          70  
          60  
          50  
          V
          IN  
          = 6 V  
          V
          IN  
          = 6 V  
          V
          IN  
          = 15 V  
          V
          IN  
          = 15 V  
          V
          IN  
          = 30 V  
          V
          IN  
          = 30 V  
          SYNC = 0 V, 3.3 V Off  
          3.3 V Off  
          0.001  
          0.01  
          0.1  
          1
          10  
          0.001  
          0.01  
          0.1  
          5-V Output Current (A)  
          1
          10  
          5-V Output Current (A)  
          Efficiency vs. 3.3-V Output Current, 200 kHz  
          Efficiency vs. 3.3-V Output Current, 300 kHz  
          100  
          90  
          80  
          70  
          60  
          50  
          100  
          90  
          80  
          70  
          60  
          50  
          V
          IN  
          = 6 V  
          V
          IN  
          = 6 V  
          V
          IN  
          = 15 V  
          V
          IN  
          = 15 V  
          V
          IN  
          = 30 V  
          V
          IN  
          = 30 V  
          SYNC = 0 V, 5 V On  
          5 V On  
          0.001  
          0.01  
          0.1  
          3.3-V Output Current (A)  
          1
          10  
          0.001  
          0.01  
          0.1  
          1
          10  
          3.3-V Output Current (A)  
          Quiescent Supply Current vs. Supply Voltage  
          Standby Supply Current vs. Supply Voltage  
          0.5  
          0.4  
          0.3  
          0.2  
          0.1  
          0.0  
          30  
          25  
          20  
          15  
          10  
          5
          ON = ON = High  
          ON = ON = 0 V  
          3
          5
          3
          5
          0
          0
          6
          12  
          18  
          24  
          30  
          0
          6
          12  
          18  
          24  
          30  
          Supply Voltage (V)  
          Supply Voltage (V)  
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          4
          Si9130  
          Vishay Siliconix  
          TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)  
          Minimum V to V  
          Differential  
          IN  
          OUT  
          vs. 5-V Output Current  
          Shutdown Supply Current vs. Supply Voltage  
          1.0  
          100  
          75  
          50  
          25  
          0
          5-V Output  
          Still Regulating  
          SHDN = 0 V  
          0.8  
          0.6  
          0.4  
          0.2  
          0.0  
          300 kHz  
          200 kHz  
          0
          6
          12  
          18  
          24  
          30  
          0.001  
          0.01  
          0.1  
          5-V Output Current (A)  
          1
          10  
          Supply Voltage (V)  
          Switching Frequency vs. Load Current  
          1000.0  
          SYNC = REF (300 kHz)  
          ON = ON = 5 V  
          3
          5
          100.0  
          10.0  
          1.0  
          5 V, V = 30 V  
          IN  
          5 V, V = 7.5 V  
          IN  
          3.3 V, V = 7.5 V  
          IN  
          0.1  
          0.1  
          1
          10  
          100  
          1000  
          Load Current (mA)  
          t  
          LX 10 V/div  
          5-V Output  
          50 mV/div  
          I
          = 100 mA  
          5-V Output Current = 1 A  
          Load  
          V
          IN  
          = 10 V  
          V
          IN  
          = 16 V  
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          5
          Si9130  
          Vishay Siliconix  
          TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)  
          RREN
          RRENT  
          t  
          put  
          IN  
          = 15 V  
          V
          = 15 V  
          V
          IN  
          t  
          t  
          16 V  
          10 V  
          LOAD  
          LOAD  
          I
          = 2 A  
          I
          = 2 A  
          put  
          ut  
          16 V  
          10 V  
          LOAD  
          LOAD  
          I
          = 2 A  
          I
          = 2 A  
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          6
          Si9130  
          Vishay Siliconix  
          PIN CONFIGURATION AND DESCRIPTION  
          CS  
          FB  
          3
          1
          2
          28  
          27  
          26  
          25  
          24  
          23  
          22  
          21  
          20  
          19  
          18  
          17  
          16  
          15  
          3
          SS  
          3
          DH  
          LX  
          3
          Ordering Information  
          ON  
          3
          3
          3
          Standard  
          Part Number  
          Lead (Pb)-Free  
          Part Number  
          Temperature  
          NC  
          NC  
          BST  
          3
          4
          Range  
          VOUT  
          DL  
          V+  
          5
          3
          NC  
          6
          Si9130CG  
          0 to 70_C  
          3.6ADJ  
          3.45ADJ  
          GND  
          V
          L
          7
          Si9130CG-T1  
          Si9130LG  
          Si9130CG-T1—E3  
          Si9130LG-T1—E3  
          5 V and 3.3 V  
          3.45 V or 3.6 V  
          SSOP-28  
          FB  
          5
          8
          ?10 to 90_C  
          PGND  
          9
          Si9130LG-T1  
          REF  
          DL  
          5
          10  
          11  
          12  
          13  
          14  
          SYNC  
          SHDN  
          BST  
          5
          Demo Board  
          Temperature Range  
          Board Type  
          LX  
          5
          ON  
          5
          DH  
          5
          Si9130DB  
          0 to 70_C  
          Surface Mount  
          SS  
          5
          CS  
          5
          Top View  
          Pin  
          Symbol  
          Description  
          1
          2
          CS  
          Current-sense input for 3.3-V Buck controller—this pins over current threshold is 100 mV with respect to FB .  
          3
          3
          SS  
          3
          Soft-start input for 3.3 V. Connect capacitor from SS to GND.  
          3
          3
          ON  
          ON/OFF logic input disables the 3.3-V Buck controller. Connect directly to V for automatic turn-on.  
          L
          3
          4
          NC  
          Not internally connected.  
          5
          NC  
          NC  
          Not internally connected.  
          6
          Not internally connected.  
          7
          3.6ADJ  
          3.45ADJ  
          GND  
          Control input to select 3.6-V output. See Voltage Selection Table for input and output combinations.  
          Control input to select 3.45-V output. See Voltage Selection Table for input and output combinations.  
          Analog ground.  
          8
          9
          10  
          REF  
          3.3-V reference output. Supplies external loads up to 5 mA.  
          Oscillator control/synchronization input. Connect capacitor to GND, 1-mF/mA output or 0.22 mF minimum. For external clock  
          synchronization, a rising edge starts a new cycle to start. To use internal 200-kHz oscillator, connect to VL or GND. For 300-kHz  
          oscillator, connect to REF.  
          11  
          12  
          SYNC  
          SHDN  
          Shutdown logic input, active low. Connect to V for automatic turn-on. The 5-V V supply will not be disabled in shutdown allowing  
          L
          L
          connection to SHDN.  
          13  
          14  
          15  
          16  
          17  
          18  
          19  
          20  
          21  
          22  
          23  
          24  
          25  
          26  
          27  
          28  
          ON  
          5
          ON/OFF logic input disables the 5-V Buck Controller. Connect to V for automatic turn-on.  
          L
          SS  
          5
          Soft-start control input for 5-V Buck controller. Connect capacitor from SS to GND.  
          5
          CS  
          5
          Current-sense input for 5-V Buck controller—this pins over current threshold is 100 mV referenced to FB .  
          3
          DH  
          Gate-drive output for the 5-V supply high-side n-channel MOSFET.  
          Inductor connection for the 5-V supply.  
          5
          LX  
          5
          BST  
          Boost capacitor connection for the 5-V supply.  
          Gate-drive output for the 5-V supply rectifying n-channel MOSFET.  
          Power Ground.  
          5
          DL  
          5
          PGND  
          FB  
          Feedback input for the 5-V Buck controller.  
          5
          V
          L
          5-V logic supply voltage for internal circuitry—able to source 5-mA external loads. V remains on with valid voltage at V+.  
          L
          V+  
          DL  
          Supply voltage input.  
          Gate-drive output for the 3.3-V supply rectifying n-channel MOSFET.  
          Boost capacitor connection for the 3.3-V supply.  
          Inductor connection for the 3.3-V supply.  
          3
          BST  
          3
          LX  
          3
          DH  
          Gate-drive output for the 3.3-V supply high-side n-channel MOSFET.  
          Feedback input for the 3.3-V Buck controller.  
          3
          3
          FB  
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          7
          Si9130  
          Vishay Siliconix  
          Voltage Selection Table  
          Input  
          Output  
          3.45ADJ  
          OPEN  
          3.6ADJ  
          OPEN  
          OPEN  
          GND  
          FB3  
          3.3 V  
          3.45 V  
          3.6 V  
          GND  
          OPEN  
          DESCRIPTION OF OPERATION  
          The Si9130 is a dual step-down converter, which takes a 5.5-V  
          to 30-V input and supplies power via two PWM controllers (see  
          Figure 1). These 5-V and 3.3-V supplies run on an optional  
          300-kHz or 200-kHz internal oscillator, or an external sync  
          signal. Amount of output current is limited by external  
          components, but can deliver greater than 6 A on either supply.  
          As well as these two main Buck controllers, additional loads  
          can be driven from two micropower linear regulators, one 5 V  
          (VL) and the other 3.3 V (REF)—see Figure 2. These supplies  
          are each rated to deliver 5 mA. If the linear regulator circuits fall  
          out of regulation, both Buck controllers are shut down.  
          3.3-V PWM Voltage Selection  
          (Pins 3.45ADJ, 3.6ADJ)  
          The voltage at this output can be selected to 3.3 V, 3.45 V or  
          3.6 V, depending on the configuration of pins 3.45ADJ and  
          3.6ADJ. Leaving both pins open results in 3.3V nominal  
          output. Grounding pin 3.45ADJ while leaving 3.6ADJ open  
          delivers 3.45-V nominal output. Grounding 3.6 ADJ while  
          leaving 3.45ADJ open sets a 3.6-V nominal output.  
          INPUT  
          5.5 V to 30 V  
          C1  
          22 mF  
          C10  
          22 mF  
          100 W  
          D2A  
          1N4148  
          D2B  
          1N4148  
          0.1 mF  
          +5 V at 5 mA  
          Si9130  
          4.7 mF  
          C4  
          0.1 mF  
          C5  
          0.1 mF  
          23  
          22  
          18  
          16  
          17  
          V
          V+  
          L
          25  
          27  
          26  
          BST  
          BST  
          3
          5
          N1  
          N3  
          N2  
          N3  
          DH  
          DH  
          5
          3
          R1  
          25 mW  
          L1  
          L2  
          R2  
          25 mW  
          10 mH  
          10 mH  
          LX  
          3
          LX  
          5
          +5 V at 3 A  
          +3.3 V at 3 A  
          D1  
          D1FS4  
          D1  
          D1FS4  
          24  
          19  
          C7  
          150 mF  
          C6  
          330 mF  
          DL  
          DL  
          CS  
          3
          5
          1
          28  
          2
          15  
          21  
          14  
          CS  
          3
          5
          5
          C12  
          150 mF  
          (Note 1)  
          (Note 1)  
          FB  
          SS  
          FB  
          SS  
          3
          C9  
          0.01 mF  
          C8  
          0.01 mF  
          3
          5
          3
          ON  
          8
          7
          +3.3 V ON/OFF  
          +5 V ON/OFF  
          SHUTDOWN  
          3
          5
          3.45-V Voltage Adjust  
          3.6-V Voltage Adjust  
          3.45ADJ  
          3.6ADJ  
          13  
          12  
          11  
          9
          ON  
          SHDN  
          SYNC  
          GND  
          OSC SYNC  
          10  
          20  
          REF  
          PGND  
          +3.3 V at 5 mA  
          C3  
          1 mF  
          Note 1: Use short, Kelvin-connected PC board  
          traces placed very close to one another.  
          FIGURE 1. Si9130 Application Circuit  
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          8
          Si9130  
          Vishay Siliconix  
          3.3-V Switching Supply  
          at power-on are avoided, and power-supplies can be  
          sequenced with different turn-on delay times by selecting the  
          correct capacitor value.  
          The 3.3-V supply is regulated by a current-mode PWM  
          controller in conjunction with several externals: two n-channel  
          MOSFETs, a rectifier, an inductor and output capacitors (see  
          Figure 1). The gate drive supplied by DH3 needs to be greater  
          than VL , so it is provided by the bootstrap circuit consisting of  
          a 100-nF capacitor and diode connected to BST3.  
          5-V Switching Supply  
          The 5-V supply is regulated by a current-mode PWM controller  
          which is nearly the same as the 3.3-V output. The dropout  
          voltage across the 5-V supply, as shown in the schematic in  
          Figure 1, is 400 mV (typ) at 2 A. If the voltage at V+ falls, nearing  
          5 V, the 5-V supply will lower as well, until the VL linear regulator  
          output falls below the 4-V undervoltage lockout threshold.  
          Below this threshold, the 5-V controller is shut off.  
          A low-side switching MOSFET connected to DL3 increases  
          efficiency by reducing the voltage across the rectifier diode. A  
          low value sense resistor in series with the inductor sets the  
          maximum current limit, to disallow current overloads at  
          power-on or in short-circuit situations.  
          The soft-start feature on the Si9130 is capacitor  
          programmable; pin SS3 functions as a constant current source  
          to the external capacitor connected to GND. Excess currents  
          The frequency of both PWM controllers is set at 300 kHz when  
          the SYNC pin is tied to REF. Connecting SYNC to either GND  
          or VL sets the frequency at 200 kHz.  
          FB  
          +5-V LDO  
          3
          V+  
          Linear  
          CS  
          3
          Regulator  
          BST  
          3.3-V  
          PWM  
          Controller  
          (See Figure 3)  
          3
          V
          L
          DH  
          3
          3.45ADJ  
          3.6ADJ  
          REF  
          +3.3-V  
          Reference  
          ON  
          LX  
          3
          DL  
          3
          ON  
          SS  
          3
          4.5 V  
          SHDN  
          PGND  
          ON  
          4 V  
          3
          FB  
          5
          CS  
          5
          2.8 V  
          5-V  
          PWM  
          Controller  
          (See Figure 3)  
          BST  
          5
          DH  
          STANDBY  
          300 kHz/200 kHz  
          Oscillator  
          5
          SYNC  
          ON  
          LX  
          5
          DL  
          5
          ON  
          SS  
          5
          ON  
          5
          FIGURE 2. Si9130 Block Diagram  
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          9
          Si9130  
          Vishay Siliconix  
          CS_  
          FB_  
          1X  
          REF,  
          3.3 V  
          (or Internal  
          5-V Reference)  
          60 kHz  
          LPF  
          Summing  
          Comparator  
          BST_  
          DH_  
          LX_  
          R
          S
          Q
          Level  
          Shift  
          OSC  
          Slope  
          Comp  
          25 mV  
          Minimum Current  
          (Pulse-Skipping Mode)  
          V
          L
          Current  
          Limit  
          4 mA  
          Shoot-  
          Through  
          Control  
          0 mV to  
          100 mV  
          SS_  
          ON_  
          30R  
          3.3 V  
          1R  
          Synchronous  
          Rectifier Control  
          V
          L
          R
          Q
          S
          Level  
          Shift  
          DL_  
          PGND  
          FIGURE 3. Si9130 Controller Block Diagram  
          3.3-V and 5-V Switching Controllers  
          The main PWM comparator is an open loop device which is  
          comprised of three comparators summing four signals: the  
          feedback voltage error signal, current sense signal,  
          slope-compensation ramp and voltage reference as shown in  
          Figure 3. This method of control comes closer to the ideal of  
          maintaining the output voltage on a cycle-by-cycle basis.  
          When the load demands high current levels, the controller is in  
          full PWM mode. Every cycle from the oscillator asserts the  
          output latch and drives the gate of the high-side MOSFET for  
          a period determined by the duty cycle (approximately  
          Each PWM controller on the Si9130 is identical with the exception  
          of the preset output voltages. The controllers only share three  
          functional blocks (see Figure 3): the oscillator, the voltage  
          reference (REF) and the 5-V logic supply (VL). The 3.3-V and 5-V  
          controllers are independently enabled with pins ON3 and ON5,  
          respectively. The PWMs are a direct-summing type, without the  
          typical integrating error amplifier along with the phase shift which  
          is a side effect of this type of topology. Feedback compensation  
          is not needed, as long as the output capacitance and its ESR  
          requirements are met, according to the Design Considerations  
          section of this data sheet.  
          VOUT/VIN   100%) and the frequency.  
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          10  
          Si9130  
          Vishay Siliconix  
          The high-side switch turns off, setting the synchronous rectifier  
          latch and 60 ns later, the rectifier MOSFET turns on. The low-side  
          switch stays on until the start of the next clock cycle in continuous  
          mode, or until the inductor current becomes positive again, in  
          discontinuous mode. In over-current situations, where the  
          inductor current is greater than the 100-mV current-limit threshold,  
          the high-side latch is reset and the high-side gate drive is shut off.  
          Shoot-through current is the result when both the high-side and  
          rectifying MOSFETs are turned on at the same time.  
          Break-before-make timing internal to the Si9130 manages this  
          potential problem. During the time when neither MOSFET is on,  
          the Schottky is conducting, so that the body diode in the low-side  
          MOSFET is not forced to conduct.  
          Synchronous rectification is always active when the Si9130 is  
          powered-up, regardless of the operational mode.  
          During low-current load requirements, the inductor current will not  
          deliver the 25-mV minimum current threshold. The Minimum  
          Current comparator signals the PWM to enter pulse-skipping  
          mode when the threshold has not been reached. pulse-skipping  
          mode skips pulses to reduce switching losses, the losses which  
          decrease efficiency the most at light load. Entering this mode  
          causes the minimum current comparator to reset the high-side  
          latch at the beginning of each oscillator cycle.  
          Gate-Driver Boost  
          The high-side n-channel drive is supplied by a flying-capacitor  
          boost circuit (see Figure 4). The capacitor takes a charge from  
          VL and then is connected from gate to source of the high-side  
          MOSFET to provide gate enhancement. At power-up, the  
          low-side MOSFET pulls LX_ down to GND and charges the  
          BST_ capacitor connected to 5 V. During the second half of the  
          oscillator cycle, the controller drives the gate of the high-side  
          MOSFET by internally connecting node BST_ to DH_. This  
          supplies a voltage 5 V higher than the battery voltage to the gate  
          of the high-side MOSFET.  
          Soft-Start  
          To slowly bring up the 3.3-V and 5-V supplies, connect capacitors  
          from SS3 and SS5 to GND. Asserting ON3 or ON5 starts a 4-A  
          constant current source to charge these capacitors to 4 V. As the  
          voltage on these pins ramps up, so does the current limit  
          comparator threshold, to increase the duty cycle of the MOSFETs  
          to their maximum level. If ON3 or ON5 are left low, the respective  
          capacitor is discharged to GND. Leaving the SS3 or SS5 pins  
          open will cause either controller to reach the terminal over-current  
          level within 10 ms.  
          Oscillations on the gates of the high-side MOSFET in  
          discontinuous mode are a natural occurrence caused by the LC  
          network formed by the inductor and stray capacitance at the LX_  
          pins. The negative side of the BST_ capacitor is connected to the  
          LX_ node, so ringing at the inductor is translated through to the  
          gate drive.  
          Soft start helps prevent current spikes at turn-on and allows  
          separate supplies to be delayed using external programmability.  
          BATTERY  
          INPUT  
          Synchronous Rectifiers  
          Synchronous rectification replaces the Schottky rectifier with a  
          MOSFET, which can be controlled to increase the efficiency of the  
          circuit.  
          V
          L
          V
          L
          BST_  
          DH_  
          When the high-side MOSFET is switched off, the inductor will try  
          to maintain its current flow, inverting the inductor’s polarity. The  
          path of current then becomes the circuit made of the Schottky  
          diode, inductor and load, which will charge the output capacitor.  
          The diode has a 0.5-V forward voltage drop, which contributes a  
          significant amount of power loss, decreasing efficiency. A  
          low-side switch is placed in parallel with the Schottky diode and  
          is turned on just after the diode begins to conduct. Because the  
          Level  
          Translator  
          LX_  
          PWM  
          V
          L
          DL_  
          rDS(ON) of the MOSFET is low, the I*R voltage drop will not be as  
          large as the diode, which increases efficiency.  
          The low-side rectifier is shut off when the inductor current drops  
          to zero.  
          FIGURE 4. Boost Supply for Gate Drivers  
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          11  
          Si9130  
          Vishay Siliconix  
          OPERATIONAL MODES  
          PWM Mode  
          The SYNC pin can be driven with an external CMOS level signal  
          with frequency from 240 kHz and 350 kHz to synchronize to the  
          internal oscillator. Tying SYNC to either VL or GND sets the  
          frequency to 200 kHz and to REF sets the frequency to 300 kHz.  
          The 3.3-V and 5-V Buck controllers operate in continuous-current  
          PWM mode when the load demands more than approximately  
          25% of the maximum current (see typical curves). The duty cycle  
          can be approximated as Duty_Cycle = VOUT/VIN.  
          Operation at 300 kHz is typically used to minimize output passive  
          component sizes. Slower switching speeds of 200 kHz may be  
          needed for lower input voltages.  
          In this mode, the inductor current is continuous; in the first half of  
          the cycle, the current slopes up when the high-side MOSFET  
          conducts and then, in the second half, slopes back down when  
          the inductor is providing energy to the output capacitor and load.  
          As current enters the inductor in the first half-cycle, it is also  
          continuing through to the load; hence, the load is receiving  
          continuous current from the inductor. By using this method, output  
          ripple is minimized and smaller form-factor inductors can be used.  
          The output capacitor’s ESR has the largest effect on output ripple.  
          It is typically under 50mV; the worst case condition is under light  
          load with higher input battery voltage.  
          Internal VL and REF  
          A 5-V linear regulator supplies power to the internal logic circuitry.  
          The regulator is available for external use from pin VL , able to  
          source 5 mA. A 4.7-mF capacitor should be connected between  
          VL and GND. To increase efficiency, when the 5-V switching  
          supply has voltage greater than 4.5 V, VL is internally switched  
          over to the output of the 5-V switching supply and the linear  
          regulator is turned off.  
          Pulse-Skipping Mode  
          When the load requires less than 25% of its maximum, the  
          Si9130 enters a mode which drives the gate for one clock cycle  
          and skips the majority of the remaining cycles. Pulse-skipping  
          mode cuts down on the switching losses, the dominant power  
          consumer at low current levels.  
          The 5-V linear regulator provides power to the internal 3.3-V  
          bandgap reference (REF). The 3.3-V reference can supply 5 mA  
          to an external load, connected to pin REF. Between REF and  
          GND connect a capacitor, 0.22 mF plus 1 mF per mA of load  
          current. The switching outputs will vary with the reference;  
          therefore, placing a load on the REF pin will cause the main  
          outputs to decrease slightly, within the specified regulation  
          tolerance.  
          In the region between pulse-skipping mode and PWM mode, the  
          controller may transition between the two modes, delivering  
          spurts of pulses. This may cause the current waveform to look  
          irregular, but will not overly affect the ripple voltage. Even in this  
          transitioning mode efficiency will stay high.  
          VL and REF supplies stay on as long as V+ is greater than 4.5  
          V, even if the switching supplies are not enabled. This feature is  
          necessary when using the micropower regulators to keep  
          memory alive during shutdown.  
          Current Limit  
          The current through an external resistor, is constantly monitored  
          to protect against over-current. A low value resistor is placed in  
          series with the inductor. The voltage across it is measured by  
          connecting it between CS_ and FB_. If this voltage is larger than  
          100 mV, the high-side MOSFET drive is shut down. Eliminating  
          over-currents protects the MOSFET, the load and the power  
          source. Typical values for the sense resistors with a 3-A load will  
          be 25 mW.  
          Both linear regulators can be connected to their respective  
          switching supply outputs. For example, REF would be tied to the  
          output of the 3.3 V and VL to 5 V. This will keep the main supplies  
          up in standby mode, provided that each load current in shutdown  
          is not larger than 5 mA.  
          Fault Protection  
          Oscillator and SYNC  
          The 3.3-V and 5-V switching controllers are shut down when one  
          of the linear regulators drops below 85% of its nominal value; that  
          is, shut down will occur when VL < 4.0 V or REF < 2.8 V.  
          There are two ways to set the Si9130 oscillator frequency: by  
          using an external SYNC signal, or using the internal oscillator.  
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          12  
          Si9130  
          Vishay Siliconix  
          DESIGN CONSIDERATIONS  
          Inductor Design  
          VREF  
          CF  
          u ǒ  
          ǒ
          ǔ
          ǔ
          VOUT RCS (2)(p)(GPWP)  
          and,  
          Three specifications are required for inductor design: inductance  
          (L), peak inductor current (ILPEAK), and coil resistance (RL). The  
          equation for computing inductance is:  
          ǒ
          ǔ
          ǔ
          ǒ
          VOUT RCS  
          ESRCF t  
          VREF  
          ǒV ǔǒV  
          OUTǔ  
          IN(MAX)–V  
          Where:  
          C
          = Output filter capacitance (F)  
          OUT  
          F
          L + ǒ  
          ǔ( )ǒ ǔ(  
          VIN(MAX) f IOUT LIR  
          V
          V
          = Reference voltage, 3.3 V;  
          = Output voltage, 3.3 V or 5 V;  
          = Sense resistor (W);  
          REF  
          OUT  
          CS  
          )
          R
          GBWP = Gain-bandwidth product, 60 kHz;  
          ESR = Output filter capacitor ESR (W).  
          Where:  
          V
          = Output voltage (3.3 V or 5 V);  
          OUT  
          CF  
          V
          = Maximum input voltage (V);  
          IN(MAX)  
          f = Switching frequency, normally  
          300 kHz;  
          I
          = Maximum dc load current (A);  
          OUT  
          Both minimum capacitance and maximum ESR requirements  
          must be met. In order to get the low ESR, a capacitance value two  
          to three times greater than the required minimum may be  
          necessary.  
          LIR = Ratio of inductor pea-to-peak ac current to  
          average dc load current, typically 0.3.  
          The equation for output ripple in continuous current mode is:  
          1
          ǒ
          )ǔ  
          VOUT(RPL) + ILPP(MAX)  
            ESRCF )  
          When LIR is higher, smaller inductance values are acceptable, at  
          the expense of increased ripple and higher losses.  
          (
          2   f   CF  
          The equations for capacitive and resistive components of the  
          ripple in pulse-skipping mode are:  
          The peak inductor current (ILPEAK) is equal to the steady-state  
          load current (IOUT) plus one half of the peak-to-peak ac current  
          (ILPP). Typically, a designer will select the ac inductor current to be  
          30% of the steady-state current, which gives ILPEAK equal to 1.15  
          VOUT(RPL)(C) +  
          –4  
          ǒ
          ǔ
          (4) 10 (L)  
          1
          1
          ǒ
          ǔVolts  
           
          )
          2
          VOUT VIN–VOUT  
          ǒ
          ǔǒ  
          ǔ
          RCS CF  
          times IOUT  
          .
          ǒ
          ǔ
          (0.02) ESRCF  
          RCS  
          VOUT(RPL)(R) +  
          Volts  
          The equation for computing peak inductor current is:  
          ǒVOUT  
          ǔ
          ǒVIN(MAX) OUTǔ  
          –V  
          The total ripple, V  
          as follows:  
          , can be approximated  
          OUT(RPL)  
          I
          + I  
          )
          LPEAK  
          OUT  
          (2)(f)(L)ǒVIN(MAX)ǔ  
          if  
          then  
          otherwise,  
          V
          V
          V
          V
          (R) < 0.5 V  
          (C),  
          OUT(RPL)  
          OUT(RPL)  
          OUT(RPL)  
          OUT(RPL)  
          OUT(RPL)  
          = V  
          = V  
          (R).  
          (C),  
          OUT(RPL)  
          OUT(RPL)  
          (C) +  
          Lower Voltage Input  
          OUTPUT CAPACITORS  
          The application circuit shown here can be easily modified to work  
          with 5.5-V to 12-V input voltages. Oscillation frequency should be  
          set at 200 kHz and increase the output capacitance to 660 mF on  
          the 5-V output to maintain stable performance up to 2 A of load  
          current. Operation on the 3.3-V supply will not be affected by this  
          reduced input voltage.  
          The output capacitors determine loop stability and ripple voltage  
          at the output. In order to maintain stability, minimum capacitance  
          and maximum ESR requirements must be met according to the  
          following equations:  
          Document Number: 70190  
          S-40805—Rev. F, 26-Apr-04  
          www.vishay.com  
          13  

          相關型號:

          SI9130CG

          Pin-Programmable Dual Controller?Portable PCs
          VISHAY

          SI9130CG-T1

          Pin-Programmable Dual Controller?Portable PCs
          VISHAY

          SI9130CG-T1-E3

          Pin-Programmable Dual Controller - Portable PCs
          VISHAY

          SI9130DB

          5- and 3.3-V Step-Down Synchronous Converters
          VISHAY

          SI9130LG

          Pin-Programmable Dual Controller?Portable PCs
          VISHAY

          SI9130LG-E3

          DUAL PWM BUCK CONTROLLER -10 TO 90C-LEAD - Tape and Reel
          VISHAY

          SI9130LG-T1

          Pin-Programmable Dual Controller?Portable PCs
          VISHAY

          SI9130LG-T1-E3

          Pin-Programmable Dual Controller - Portable PCs
          VISHAY

          SI9130_11

          Pin-Programmable Dual Controller - Portable PCs
          VISHAY

          SI9135

          SMBus Multi-Output Power-Supply Controller
          VISHAY

          SI9135LG

          SMBus Multi-Output Power-Supply Controller
          VISHAY

          SI9135LG-E3

          TRIPLE PWM BUCK CNTR (5V,3.3V,12V)SM-LEA - Tape and Reel
          VISHAY
          王者李白吃王昭君的下面,2022一本久道久久综合狂躁,学长我想得到你的全部第2集,99久久国产综合精品久久国产